Evolution of Proto–neutron Stars with Kaon Condensates
نویسندگان
چکیده
We present simulations of the evolution of a proto-neutron star in which kaon-condensed matter might exist, including the effects of finite temperature and trapped neutrinos. The phase transition from pure nucleonic matter to the kaon condensate phase is described using Gibbs’ rules for phase equilibrium, which permit the existence of a mixed phase. A general property of neutron stars containing kaon condensates, as well as other forms of strangeness, is that the maximum mass for cold, neutrino-free matter can be less than the maximum mass for matter containing trapped neutrinos or which has a finite entropy. A proto-neutron star formed with a baryon mass exceeding that of the maximum mass of cold, neutrino-free matter is therefore metastable, that is, it will collapse to a black hole at some time during the Kelvin-Helmholtz cooling stage. The effects of kaon condensation on metastable stars are dramatic. In these cases, the neutrino signal from a hypothetical galactic supernova (distance ∼ 8.5 kpc) will stop suddenly, generally at a level above the background in the SuperK and SNO detectors, which have low energy thresholds and backgrounds. This is in contrast to the case of a stable star, for which the signal exponentially decays, eventually disappearing into the background. We find the lifetimes of kaoncondensed metastable stars to be restricted to the range 40–70 s and weakly dependent on the proto-neutron star mass, in sharp contrast to the significantly larger mass dependence and range (1–100 s) of hyperon-rich metastable stars. We find that a unique signature for kaon condensation will be difficult to identify. The formation of the kaon condensate is delayed until the final stages of the Kelvin-Helmholtz epoch, when the neutrino luminosity is relatively small. In stable stars, modulations of the neutrino signal caused by the appearance of the condensate will therefore be too small to be clearly distinguished with current
منابع مشابه
Evolution of proto-neutron stars with quarks.
Neutrino fluxes from proto-neutron stars with and without quarks are studied. Observable differences become apparent after 10-20 s of evolution. Sufficiently massive stars containing negatively charged, strongly interacting, particles collapse to black holes during the first minute of evolution. Since the neutrino flux vanishes when a black hole forms, this is the most obvious signal that quark...
متن کاملQuark-Hadron Phase Transitions in Young and Old Neutron Stars
The mixed phase of quarks and hadrons which might exist in the dense matter encountered in the varying conditions of temperature and trapped neutrino fraction in proto-neutron stars is studied. The extent that the mixed phase depends upon the thermodynamical parameters as well as on the stiffness of matter in the hadronic and quark phases is discussed. We show that hadronic equations of state t...
متن کاملar X iv : a st ro - p h / 98 02 02 8 v 1 3 F eb 1 99 8 Phase Transitions in Neutron Stars
Phase transitions in neutron stars due to formation of quark matter, kaon condensates, etc. are discussed with particular attention to the order of these transitions. Observational consequences of phase transitions in pulsar angular velocities are examined.
متن کاملKaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars
The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaonnucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry en...
متن کاملProbing the internal composition of neutron stars with gravitational waves
Gravitational waves from neutron star binary inspirals contain information about the as yet unknown equation of state of supranuclear matter. In the absence of definitive experimental evidence that determines the correct equation of state, a number of diverse models that give the pressure inside a neutron star as function of its density have been constructed by nuclear physicists. These models ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000